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Abstract. A substantial proportion of cognitively healthy elders (HC) show abnormally high amyloid-� (A�) deposition,
a major pathology of Alzheimer’s disease (AD). These subjects are at increased risk of Alzheimer’s disease (AD) dementia,
and biomarkers are needed to predict their cognitive deterioration. Here we used relevance vector regression (RVR), a pattern-
recognition method, to predict concurrent cognitive decline on the basis of longitudinal gray matter (GM) changes, within
two a priori, meta-analytically defined functional networks subserving episodic memory and executive function. Ninety-six
HC subjects were assessed annually for three years with structural MRI and cognitive tests within the Alzheimer’s Disease
Neuroimaging Initiative. Presence of abnormal biomarker values of A� (A�+) were determined with cerebrospinal fluid and
amyloid-PET (HC-A�+, n = 30; with n = 66 for normal HC-A�–). Using leave-one-out cross-validation, we found that in
HC-A�+ patterns of GM changes within both networks predicted decline in episodic memory (r = 0.61, p < 0.001; r = 0.40,
p = 0.03), but not executive function. In HC-A�–, GM changes within the executive function network predicted decline in
executive function (r = 0.44, p < 0.001). Previously established region-of-interest (ROI)-based predictors such as changes in
hippocampal volume, within an AD-signature multi-ROI, or total GM volume were not predictive of cognitive decline in any
group or cognitive domain. RVR analyses unrestricted to the a priori networks yielded compatible results with the restricted
case. In conclusion, RVR-derived patterns of subtle cortical GM changes are biomarker candidates of concurrent cognitive
decline in aging and subjects at risk for AD.
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INTRODUCTION

Abnormally high levels of brain amyloid-� (A�)
in cognitively healthy elders (HC) are associated with
an increased risk of developing Alzheimer’s disease
(AD) dementia [1–3]. An increase in A� alone is
associated, however, with a relatively low rate of clin-
ical worsening [4–6]. Instead, in HC subjects with
abnormal levels of A� (HC A�+), cognitive decline
[6, 7] and an increased risk of progression to mild
cognitive impairment (MCI) or AD dementia [4, 5]
are more strongly associated with increased levels of
biomarkers of neurodegeneration (cerebrospinal fluid
(CSF) tau, hippocampal volume, fluorodeoxyglu-
cose (FDG)-positron emission tomography (PET)
metabolism) than with the overall level of A� burden.
In particular, changes in gray matter (GM) volume
become apparent in close proximity to the first, pre-
clinical changes in cognition [2], which suggests that
the emergence of GM changes is a pivotal event in
the early stages of AD.

Neuroimaging studies have shown that in HC
A�+, GM volume changes are detectable widely
throughout the brain, predominantly within the
medial-temporal lobe [8–14], but also in other brain
areas such as the medial prefrontal cortex and the pari-
etal cortex [11, 14]. These results suggest that in HC
A�+ subjects, GM atrophy emerges already in multi-
ple brain areas. Those brain areas have previously
been shown to support higher cognitive functions
such as episodic memory and executive function,
which are affected by aging and show accelerated
decline early in the course of AD [4, 15, 16]. Thus,
the assessment of such subtle but widespread GM
changes may prove useful as a biomarker of con-
current cognitive decline in asymptomatic elderly
subjects.

The aim of the current longitudinal study is to find
patterns of GM atrophy that can be used to predict
concurrent cognitive decline in two key cognitive
domains (memory and executive function), in cog-
nitively healthy subjects with and without abnormal
levels of A�.

Here we used a pattern recognition method, called
relevance vector regression (RVR), which allows the
extraction of patterns within a high-dimensional fea-
ture space (e.g., voxel-based intensities representing
local GM volume) for estimating continuous vari-
ables (e.g., cognitive test scores [17–19] or age [20,
21]). This is in contrast to other pattern recognition
methods such as support vector machine (SVM) and
Bayesian classifiers that have previously been applied

to binary outcomes, such as classifying between nor-
mal subjects and subjects at risk for AD [22, 23], or
between cognitively stable healthy elderly subjects,
and subjects showing cognitive decline [24]. In recent
cross-sectional studies using RVR, GM atrophy in the
medial temporal lobe and other cortical brain areas
was found to be a good predictor of accompanying
global cognitive performance in a pooled sample of
cognitively healthy elderly subjects, MCI, and AD
[19] and within healthy subjects alone [17]. In the
current longitudinal study in healthy subjects (HC
A�–) and subjects at risk for AD (HC A�+), we
applied RVR to predict concurrent decline in episodic
memory and executive function on the basis of GM
changes within functional networks known to sub-
serve each of the cognitive domains. First, we used
a cross-validation paradigm to establish patterns of
GM changes within each network that are specific
to at-risk subjects and healthy aging and that esti-
mate changes in each specific cognitive domain. In
addition, we compared the accuracy of the estima-
tions resulting from the RVR with that of previously
established region-of-interest (ROI)-based measures
including changes in hippocampal volume, in multi-
ROI GM volume within “AD-signature” regions [25]
and in the whole GM. Finally, we computed unre-
stricted RVR analyses to assess whether GM changes
outside of the a priori defined networks may also
contribute to predict concurrent cognitive decline.

METHODS

Subjects

We included 96 cognitively healthy subjects from
the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) study [26]. In addition to the inclusion cri-
teria defined by the ADNI study, the completion of
baseline plus three yearly follow-up examinations,
including structural magnetic resonance imaging
(MRI) and neuropsychological assessments, was
required in the current study. Moreover, the availabil-
ity of a biomarker-based measurement of A� levels
(CSF A�1-42, Pittsburgh compound B (PiB)-PET, or
AV-45 PET) at any time during their participation in
ADNI was also required.

The diagnostic guidelines for the classification as
HC within the ADNI study were as follows [27]:
a baseline HC diagnosis was given if the patient
had a clinical dementia rating (CDR) of 0 and
Mini-Mental State Exam (MMSE) scores between
24 and 30 (inclusive), together with an absence of
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memory complaints or impaired memory function.
Normal memory function was defined according
to the delayed Paragraph Recall subscale of the
Wechsler Memory Scale – Revised, corrected for
years of education: score ≥9 for 16 or more years of
education, ≥5 for 8–15 years of education, and ≥3
for 0–7 years of education. See the ADNI Procedures
Manual for details on diagnostic guidelines and
neuropsychological examinations (available at the
ADNI study website: http://adni.loni.usc.edu/wp-
content/uploads/2010/09/ADNI GeneralProcedures
Manual.pdf).

As required by ADNI publishing guidelines,
a description of the project’s scope and purpose
follows: The ADNI was launched in 2003 by the
National Institute on Aging (NIA), the National
Institute of Biomedical Imaging and Bioengineering
(NIBIB), the Food and Drug Administration (FDA),
private pharmaceutical companies and non-profit
organizations as a $60 million, 5-year public-private
partnership. The primary goal of ADNI has been to
test whether serial MRI, PET, other biological mark-
ers, and clinical and neuropsychological assessment
can be combined to measure the progression of MCI
and early AD. Determination of sensitive and specific
markers of very early AD progression is intended to
aid researchers and clinicians to develop new treat-
ments and monitor their effectiveness, as well as
lessen the time and cost of clinical trials.

The Principal Investigator of this initiative is
Michael W. Weiner, MD, VA Medical Center and
University of California – San Francisco. ADNI is
the result of efforts of many co- investigators from
a broad range of academic institutions and private
corporations, and subjects have been recruited from
over 50 sites across the U.S. and Canada. The initial
goal of ADNI was to recruit 800 subjects but ADNI
has been followed by ADNI-GO and ADNI-2. To date
these three protocols have recruited over 1,500 adults,
ages 55 to 90, to participate in the research, consisting
of cognitively normal older individuals, people with
early or late MCI, and people with early AD. The
follow up duration of each group is specified in the
protocols for ADNI-1, ADNI-2, and ADNI-GO. Sub-
jects originally recruited for ADNI-1 and ADNI-GO
had the option to be followed in ADNI-2. For up-to-
date information, see http://www.adni-info.org.

Cognitive assessments

Global cognitive performance was measured by
the summary score of the Alzheimer’s Disease

Assessment Scale – Cognitive Subscale (ADAS-Cog)
[28]. For the measure of multi-domain memory per-
formance we used a previously established composite
score, averaged across several memory tests (ADNI-
MEM) [29]. Briefly, the ADNI-MEM score is based
on Rey’s Auditory Verbal Learning Test, the word
recall tests from both the ADAS-Cog and MMSE
assessments, and the Logical Memory test. Execu-
tive function was assessed with ADNI-EF [30],
another composite score based on measures of Cat-
egory Fluency (animals and vegetables), the Trail
Making Tests A and B, Digit Span Backwards,
Digit-Symbol Substitution, and Clock Drawing tests.
Both ADNI-MEM and ADNI-EF are represented as
z-scores.

CSF measurement of Aβ1-42 levels

CSF samples were collected at multiple centers
within the ADNI study, subsequently frozen at –80◦C
and sent for analysis to the ADNI Biomarker Core
laboratory at the University of Pennsylvania. CSF
A�1-42 concentration was measured at baseline with
the multiplex xMAP Luminex platform (Luminex
Corp., Austin, TX) [31].

PiB-PET and AV-45-PET

PiB-PET scans were comprised of four 300-s
frames taken 50 min after injection of 15 ± 1.5 mCi
of (11C) Pittsburgh compound B. CT or transmis-
sion scans were used for attenuation correction. The
scans were preprocessed to result in standard ori-
entation, voxel size, and resolution for all subjects.
Here we used global standardized uptake value ratio
(SUVR) PiB-PET values obtained as the average of
fourteen representative ROIs distributed throughout
the brain.

AV-45-PET scans consisted of four 300-s frames
measured 50 min after injection of 10 ± 1.0 mCi
of (18F) Florbetapir. As with PiB-PET, we used
SUVR AV-45-PET values obtained as the average
of image values within several ROIs superimposed
on images with standard orientation, voxel size,
and resolution.

The PET Facility of the University of Pittsburgh
carried out the preprocessing and analysis of the PiB-
PET and AV-45 scans; thus the methodology, ROIs
used for quantification and results of the analyses are
all available at the ADNI study website (http://adni.
loni.usc.edu/data-samples/pet/).

http://adni.loni.usc.edu/wp-content/uploads/2010/09/ADNI_GeneralProceduresManual.pdf
http://adni.loni.usc.edu/wp-content/uploads/2010/09/ADNI_GeneralProceduresManual.pdf
http://adni.loni.usc.edu/wp-content/uploads/2010/09/ADNI_GeneralProceduresManual.pdf
http://www.adni-info.org
http://adni.loni.usc.edu/data-samples/pet/
http://adni.loni.usc.edu/data-samples/pet/
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Dichotomization of diagnostic groups based
on Aβ biomarker measurements

We divided the sample into groups of abnormally
high A� levels (HC A�+) and normal A� levels (HC
A�–) based on previously established cut-off val-
ues for CSF A�1-42 concentration [31] (available in
n = 71 subjects), and global brain levels of PiB-PET
(n = 5) or AV-45 PET (n = 20) [32, 33]. That is, sub-
jects with CSF A�1-42 ≤192 pg/mL were classified
as A�+ and for PiB-PET and AV-45-PET imaging,
subjects with global SUVR values ≥1.5 and ≥1.13,
respectively, were classified as A�+ (Table 1). This
approach is supported by previous finding of good
correspondence between the CSF measures of A�1-42
and molecular PET for discriminating between ele-
vated and normal levels [16, 33, 34].

These cut-off values were applied to the baseline
values of the biomarker, in the case of CSF A�1-42,
but for PiB-PET and AV-45 PET, the baseline val-
ues had to be extrapolated during the ongoing study,
as previously reported by our group [14] and oth-
ers [8]. Briefly, in the ADNI I study, PiB-PET scans
were obtained 12 to 48 months after baseline, and AV-
45-PET 48 to 72 months. To estimate the A� status
(A�+ versus A�–) at baseline, we used the following
criteria: if the subject had more than one follow-up

Table 1
Subject characteristics at baseline

Group HC A�+ HC A�–

N 30 66
Gender (f/m) 13/17 37/29
Agea 76.2 (5.3) 75.7 (5.2)
Years of educationa 15.5 (3.2) 15.6 (3.0)
ADAS-Coga 7.7 (3.3)∗ 5.7 (2.7)
ADNI-MEM (× 10−1) 8.0 (4.4) 9.0 (5.3)
ADNI-EF (× 10−1) 4.2 (6.2)∗ 7.6 (6.6)
ApoE (�4 + / �4–) 18/12∗∗ 9/57
Converters after 3/after 4/12 2/14

6 yearsb

Source of A� assessment
CSF A�1-42 (pg/mL) 138.1 (28.6)∗∗ 241.7 (28.3)

n = 22 n = 49
PIB-PET (SUVR)c 1.58 1.39 (1.20–1.49)

n = 1 n = 4
AV-45 PET (SUVR)c 1.33 (1.22–1.71) 1.02 (0.86–1.12)

n = 7 n = 13

HC, healthy control; ADAS-Cog, Alzheimer’s Disease Assess-
ment Scale, Cognitive subscale; ADNI-EF, ADNI executive
function Scale; ADNI-MEM, ADNI Memory Scale. aValues are
mean (SD). bNumber of subjects who converted from HC to MCI
or AD, within 3/within 6 years after the initial visit. cValues are
median (range). For PiB-PET and AV-45, the values of the first
available measurement are shown. Here, statistical comparisons
are not shown due to low number of subjects per cell. ∗p < 0.05;
∗∗p < 0.001.

PiB-PET or AV-45 PET measurement available, we
computed linear regressions with interval duration
between visits as the predictor and global brain PiB-
PET or AV-45-PET SUVR as the dependent variable.
The intercepts of the regressions were taken as the
PiB-PET and AV-45 SUVRs at baseline [35]. If a sub-
ject did not have follow-up measurements available
but was below the cut-off value for the modality, it was
considered A�– since amyloid deposition is expected
to increase or remain stable in the age range of our
subjects [10, 35]. If a subject did not have follow-up
measurements available, but was above the cut-off
value for the modality, the rate of change in PiB-PET
and AV-45 PET was derived for the remainder of the
ADNI HC cohort and the subject was extrapolated
based on this annual rate.

3D T1-weighted MRI

The MRI scans were obtained from a pre-selection
of ADNI I scans reported in [36]. This standardized
dataset was proposed in order to consolidate selection
criteria of MRI scans among researches accessing
the ADNI database. The scans were all acquired
in 1.5 T scanners and with 1.25 × 1.25 × 1.20 mm3

voxel size. The scans passed image quality cri-
teria established and preprocessed by the ADNI
MRI Core, including field-gradient correction, B1-
calibration correction and correction for residual
intensity inhomogeneities with the N3 method. For
the current study, only subjects with yearly follow-
up visits for a total of 3 years were included (baseline
plus three follow-ups) (http://adni.loni.usc.edu/data-
samples/mri/).

Longitudinal pre-processing of MRI scans

The pre-processing pipeline used for the MRI
scans has been previously described elsewhere [14],
and has been used in previous voxel-based mor-
phometry studies [37]. Briefly, for each subject, the
MRI scans of each of the 4 time points (baseline
and 3 annual follow-up scans) were rigidly aligned
between time points and an intra-subject mean scan
was obtained by averaging the realigned scans. The
realigned MRI scans were segmented into GM, white
matter (WM), and CSF [38]. The intra-subject mean
image was normalized to the MNI T1-weighted MRI
template via nonlinear diffeomorphic transformation
(DARTEL tool in SPM8 [39]). Subsequently, the
spatial normalization parameters computed for the
mean image were applied to all image segments

http://adni.loni.usc.edu/data-samples/mri/
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(GM, WM, CSF) at each time point. The longitu-
dinal pre-processing was performed with the VBM8
toolbox (http://dbm.neuro.uni-jena.de/vbm/ [37]) of
SPM8 (http://www.fil.ion.ucl.ac.uk/spm/). The qual-
ity of the pre-processed scans was assessed visually.
For the statistical analysis (see below), a GM mask
was generated. All of the spatially normalized GM
segments were summed voxel-by-voxel across sub-
jects and time points. The resulting image was scaled
to a maximum value of 1 and subsequently binarized,
applying a threshold of >0.3.

Statistical analyses

Demographic differences
We tested for baseline group differences in age,

gender, years of education, ApoE genotype (�4 car-
riers versus noncarriers), and cognitive test scores, as
well as differences in the proportion of converters to
MCI or AD within 3 and 6 years after baseline (see
http://adni.loni.usc.edu/wp-content/uploads/2010/09/
ADNI GeneralProceduresManual.pdf for details on
the MCI and AD diagnostic criteria). We computed
t-tests for the continuous variables and χ2 tests for
the categorical variables. All statistical analyses
were performed with the R statistical software,
unless otherwise stated (http://www.r-project.com).

Differences in rates of cognitive change between
Aβ groups

In order to assess the effect of high A� burden onto
the rate of cognitive change, we performed a two-
level statistical analysis. At the subject level, we
computed rates of change in test score over the three
years, for each test score and subject separately. At
the group level of analysis, we formulated robust lin-
ear regression models for each test score with the rate
of change in cognitive test score as main outcome and
A� status as main predictor. We included age, gender,
years of education, and test score at baseline as covari-
ates. From this model, we obtained individual rates
of change in each of the cognitive tests, adjusted by
covariates. We aimed to predict these rates of change
in test score, adjusted for covariates, with RVR and
in ROI-analyses (see below).

Estimation of individual atrophy rates
We computed rates of change in GM volume,

voxel-by-voxel and for each subject separately, by
fitting a linear-regression model with time-after-
baseline t (in years) as the only regressor [11, 14, 40]:

Y (t) = Bt + c (1)

Y(t) represents the voxel-value of GM volume, B the
rate of change and c a constant term. B is a 3D image
with voxel values representing the average rate of
GM change from baseline to the last visit. The rate-
of-change images were smoothed with an isotropic
Gaussian kernel of FWHM = 8 mm. The analysis
was performed with SPM8 (http://www.fil.ion.ucl.ac.
uk/spm/).

Differences in rates of GM atrophy between Aβ

groups
We performed a voxel-wise multiple linear regres-

sion to assess the patterns of regional change in
GM volume for each A� group separately, and the
difference between said patterns. The main regres-
sor was the group variable (HC A�– versus HC
A�+) and the covariates were age, gender, years of
education, and ApoE genotype (carriers of the �4
allele versus non-carriers). Unless otherwise stated,
we applied a voxel-wise significance threshold of
� = 0.001 (uncorrected) and a cluster-size threshold,
family-wise error corrected, of � = 0.05 to correct for
multiple comparisons. The analyses were performed
with SPM8.

A priori defined cognitive networks
To restrict the search space of our main RVR anal-

yses, we determined functional networks subserving
executive function and episodic memory. These net-
work maps were used in the RVR analysis (explained
in the next section) as masks to restrict the voxels
participating in the prediction of cognitive change.

The executive function network was obtained from
a functional network map derived from resting-state
fMRI by Smith et al. [41] (Supplementary Figure 1),
and it comprises regions that were shown to be asso-
ciated with executive function in a meta-analysis of
task-fMRI activation studies. For episodic memory,
no such resting-state functional network map was
reported in that study [41]. Therefore, in order to
obtain a map of the episodic memory network we
directly used a meta-analytical approach based on
the Neurosynth database (http://neurosynth.org) [42].
Neurosynth meta-analyses compute the likelihood
that a certain brain region is associated with a specific
cognitive function. This is done by computing, voxel
by voxel, the ratio between the number of studies
in the database that show activation in that voxel and
report the specific cognitive function versus the num-
ber of studies that do not. This generates a z-scored

http://dbm.neuro.uni-jena.de/vbm/
http://www.fil.ion.ucl.ac.uk/spm/
http://adni.loni.usc.edu/wp-content/uploads/2010/09/ADNI_GeneralProceduresManual.pdf
http://adni.loni.usc.edu/wp-content/uploads/2010/09/ADNI_GeneralProceduresManual.pdf
http://www.r-project.com
http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/
http://neurosynth.org
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and FDR-corrected likelihood map of regions that
are significantly associated with the cognitive domain
in question. For determining regions representing
episodic memory, we performed a search of the term
“Memory Retrieval” as a proxy for episodic memory
(Supplementary Figure 1).

Relevant vector regression
We used RVR to determine spatial patterns of GM

volume change that are good estimators of cogni-
tive change over 3 years. RVR was first proposed
in [43] as a general method for machine learning,
and was applied to neuroimaging only recently [18,
19]. Briefly, RVR is a kernel-based pattern recogni-
tion method formulated in a Bayesian framework. In
RVR, a set of features, such as the voxel values coding
the rate of change in GM volume, are used to calcu-
late a kernel, which can be understood as a measure
of similarity between features belonging to different
subjects. Specifically, the kernel values are computed
as the dot product between pairs of scans, which
entails multiplying the scans voxel by voxel and sum-
ming up the result across voxels. In scans that exhibit
similar patterns, i.e., similar atrophy rates in similar
regions, the dot-product results in relatively high ker-
nel values, whereas dissimilar patterns result in low
kernel values. RVR assumes that a dependent variable
(i.e., here the adjusted rates of change in cognitive
test score) can be modeled as a linear combination
(i.e., a weighted sum) of the kernel values. In our
case, this means that RVR works under the assump-
tion that there is a relationship between a particular
pattern of GM volume change and cognitive change.
More specifically, a step-wise optimization procedure
(maximum-likelihood maximization) is used to find
the weighted sum of kernel values that best estimates
the actual rates of change in test score. During the
optimization procedure, weighting values that con-
tribute little to the estimation decrease exponentially
in each step. Thus the estimated data points (rates
of change in cognitive test score) are ultimately esti-
mated only from a subset of relevant features from
the full dataset.

Here, we computed one RVR models in each of the
A� groups separately. For each group, the kernel val-
ues represented thus a measure of similarity between
the patterns of GM volume change of the subjects
in the group. For each model, a leave-one-out cross-
validation (LOOCV) approach was used to estimate
the (adjusted) rate of change in cognitive test score
subject by subject, based on the regression weights
estimated for all the subjects (the training set) except

the one left out (the test set). Thus, LOOCV allowed
us to estimate cognitive decline for each subject based
only on the similarity of the subject’s atrophy pattern
with respect to the rest of its group. For each model,
there were as many LOOCV steps as subjects in the
group. As a measure of accuracy of the RVR predic-
tions, we computed the Pearson moment correlation
between the actual versus estimated rates of change
in test score (i.e., across LOOCV steps).

Weight maps
For each LOOCV step, RVR can be used to obtain

a spatial weight-map displaying the relative contri-
bution of each voxel to the estimation of the rate of
change for the subject left out. This is done by com-
puting a weighted average of the GM volume change
maps for all the subjects in the training set, where the
weighting factors are the result of the RVR model
(see previous paragraph). For each of the 6 RVR
models, one average weight-map was calculated as
the mean of the weight-maps across LOOCV steps.
These final weight-maps were each z-score trans-
formed, thresholded at |z| > 1.5, and overlaid onto
an MNI T1 template separately, to represent regions
maximally predictive of decline on the corresponding
test score and group. This representation was chosen
to highlight patterns of GM change within a group and
consistent across subjects (LOOCV steps), but it has
to be stressed than even voxels/regions below thresh-
old do contribute to the RVR prediction. In addition, it
has to be noted that even regions showing a relatively
slow GM decline can appear in the weight map with
high values, for example if decline in such regions
is consistently found across subjects and if it con-
sistently relates to cognitive decline across CV folds.
All RVR analyses were performed with the PRONTO
toolbox for SPM [44].

Cross-validation of RVR models
In both A� groups, we computed RVR analyses

restricted to the episodic memory network to predict
changes in memory performance (ADNI-MEM) and
analyses restricted to the executive function network
to predict changes in executive function (ADNI-EF).
To assess the specificity of the patterns found in those
analyses, we also computed RVR analyses crossing
the cognitive networks with the cognitive tests: we
predicted changes in ADNI-EF with RVR analyses
restricted to the episodic memory network and vice
versa. Finally, in order to assess whether regions out-
side of the a priori networks may have predictive
value, we also computed unrestricted RVR analyses
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applied to the whole GM, using no a priori networks.
For unrestricted RVR, we also computed analyses to
predict changes in global cognition as assessed by the
ADAS-Cog test.

ROI-based analysis
To compare the performance of RVR with ROI-

based approaches, we tested the predictive value of
GM changes within three a priori selected ROIs:
the hippocampus, the AD-signature multi-ROI pre-
sented in [45], and the whole GM. The hippocampus
ROI was taken from the AAL Atlas [46], averaging
left and right hippocampi. The AD-signature multi-
ROI was comprised of the following regions from the
AAL Atlas: medial temporal cortex, inferior temporal
gyrus, temporal pole, angular gyrus, superior frontal
gyrus, superior parietal lobule, supramarginal gyrus,
precuneus, and inferior frontal sulcus (left and right
averaged where applicable). For the whole GM ROI,
the customized GM mask derived during scan pre-
processing (see section Longitudinal pre-processing
of MRI scans above) was used. The ROI-based rate
of change in GM volume was computed as the aver-
age of the rates of change across all voxels with the
ROI (see subsection Estimation of individual atrophy
rates).

In linear regression models, we tested the predic-
tive value of GM changes within each ROI when
predicting the adjusted rates of change in test score for
each of the cognitive measures (i.e., the same values
as in RVR). As in RVR, we implemented a LOOCV
procedure for each of the 6 linear regression models
and computed the correlation between predicted and
actual rates of change in test score across LOOCV
steps, as well as the prediction error. For each model,

there were as many LOOCV folds as subjects in
the group. The linear models were computed with
the lm function of the R statistical software and
the LOOCV with the CVlm function of the DAAG
package in R.

RESULTS

Sample description

HC A�+ had poorer baseline global cognition
(ADAS-Cog, p < 0.05) and also poorer executive
function (ADNI-EF, p < 0.05) than HC A�– subjects
(Table 1). There was a higher proportion of ApoE
�4 carriers in the HC A�+ group when compared
with the HC A�–. There were trend-level higher
proportions of subjects who converted to either MCI
or AD after 3 and after 6 years in the HC A�+ group
when compared to HC A�–, but the differences were
not significant (p = 0.07 and p = 0.08). There were
no significant group differences in age, gender distri-
bution, or years of education. The proportion of HC
A�+ subjects as per AV-45 PET (35%) was similar
to the proportion obtained with CSF A�1-42 (31%,
chi-square test p > 0.5), meaning that there was no
bias toward A�+ classifications due to the later mea-
surement of AV-45 PET with respect to CSF A�1-42
(Table 1).

Aβ-group differences in cognitive decline over
3 years

For the rates of change in cognitive scores
(Fig. 1, Table 2), HC A�+ subjects showed a faster

Fig. 1. Rates of change in the three cognitive test scores over 3 years, adjusted for age, gender, years of education and baseline test score.
The boxes represent the inter-quartile ranges (IQRs) and the lines extend up to 1.5 times the IQR. The outliers are shown as points and are
by definition outside the ± 1.5 × IQR range. ∗p < 0.05, ∗∗p < 0.001.
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Table 2
Results of regression analysis on group (HC A�– versus HC A�+)

as main predictor of 3-year rates of change in cognition

Test Predictor Coefficient (SE)

ADAS-Cog A� group (×10−1) 6.4 (1.8)∗∗
Baseline-score (×10−1) –1.9 (0.3)∗∗
Age (×10−2) 2.8 (1.6)∗

ADNI-MEM A� group (×10−2) –6.8 (2.8)∗

Baseline-score (×10−2) –4.2 (2.8)§
Age (×10−3) –4.0 (2.5)§

ADNI-EF A� group (×10−2) n.s.

Baseline-score (×10−2) –4.3 (2.6)§
Age (×10−3) –7.7 (2.9)∗

HC, healthy control; ADAS-Cog, Alzheimer’s Disease Assess-
ment Scale, Cognitive subscale; ADNI-EF, ADNI executive

function Scale; ADNI-MEM, ADNI Memory Scale. §p < 0.1;
∗p < 0.05; ∗∗p < 0.001.

decline than HC A�– in ADAS-Cog (p < 0.001)
and ADNI-MEM (p = 0.009), but not in ADNI-EF
when compared to HC A�–. Higher rates of decline
were associated with higher age and lower baseline
neuropsychological test score for ADAS-cog, and
ADNI-EF (except for baseline score, p = 0.05), and
at statistical trend level for ADNI-MEM (Table 2).

Aβ– group differences in GM change over 3 years

HC A�+ showed a distributed pattern of significant
rates of GM atrophy, with the fastest rates (effect size
d > 1.5) found in the hippocampus, caudate nucleus,
and the temporal, pre-frontal, medial frontal, and
medial parietal cortices (Fig. 2A). HC A�– showed
significant rates of GM atrophy mainly within the
prefrontal, cingulate, and temporal cortices, but to
a much lower extent than HC A�– (Fig. 2B). When
compared with HC A�–, HC A�+ showed faster
rates of GM decline predominantly within the pos-
terior hippocampus, posterior cingulate cortex, and
precuneus (Fig. 3C).

Predictions of cognitive change from RVR
restricted to the episodic memory network

When restricted to the episodic memory network,
RVR yielded a pattern predictive of ADNI-MEM
changes in the HC A�+ group (r = 0.61, p < 0.001,
Fig. 3A). No pattern was obtained for changes in
ADNI-MEM in HC A�– (Fig. 3B). In addition,
no patterns predictive of ADNI-EF change were
obtained for either group, indicating that the GM
patterns detected by RVR within this network were
specific to memory changes in the HC A�+ group.

In contrast to RVR, the ROI-based analyses for hip-
pocampus volume or whole GM volume yielded no
significant estimations of change in ADNI-MEM
score in HC A�+ (Hippocampus: r = 0.27, p = 0.14;
whole GM: r = 0.30, p = 0.11), but showed a trend
when the AD-signature was used as the predictor
(r = 0.35, p = 0.054).

Predictions of cognitive change from RVR
restricted to the executive function network

When restricted to the executive function net-
work, RVR yielded a pattern predictive of ADNI-EF
changes only in the HC A�– group (r = 0.44,
p < 0.001, Fig. 4A). No pattern was obtained for
changes in ADNI-EF in HC A�+. However, within
this network RVR yielded a pattern predictive of
ADNI-MEM changes in HC A�+ subjects (r = 0.40,
p = 0.03, Fig. 4B). In contrast to RVR, none of the
ROI-derived estimations of change in ADNI-EF for
HC A�– was significant (Hippocampus: r = –0.01,
p = 0.94; AD-Signature: r = 0.19, p = 0.13; whole
GM: r = 0.11, p = 0.34).

Predictive patterns of GM change within the
a priori networks

Figure 5A shows regions predictive of ADNI-
MEM changes in HC A�+ for the RVR model
restricted to the episodic memory network. The
highest weights were found within the posterior
hippocampi and medial-parietal regions. Figure 5B
shows regions predictive of ADNI-MEM changes
in HC A�+ for the RVR model restricted to the
executive function network. In this case, the high-
est weights were found within the caudate nucleus
and prefrontal regions, but also within medial-parietal
regions, consistent with the previous result. Fig-
ure 5C shows the regions predictive of ADNI-EF
changes in HC A�– when RVR was restricted to
the executive function network. Regions with the
highest weights were located in the putamen and
frontal regions.

Predictions of cognitive change based on
unrestricted RVR

In the unrestricted analyses, RVR yielded a pattern
of GM changes that was associated with ADNI-MEM
changes in HC A�+ (r = 0.38, p = 0.037, Fig. 6A),
but not in HC A�– (Fig. 6B). Conversely, RVR
yielded a pattern of GM changes that was associ-
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Fig. 3. Actual versus Estimated rates of change in test score result-
ing from the RVR models computed within the episodic memory
network for ADNI-MEM in (A) HC A�+ and (B) HC A�– subjects.

Fig. 4. Actual versus Estimated rates of change in test score result-
ing from the RVR models computed within the executive function
network for (A) ADNI-EF in HC A�– and (B) ADNI-MEM in HC
A�+ subjects.

ated with ADNI-EF changes in HC A�– (r = 0.40,
p = 0.006, Fig. 6D), but not HC A�+ (Fig. 6C).
In addition, no significant results were obtained
for ADAS-Cog change (r = 0.08 for HC A�+ and
r = 0.10 for HC A�–). The weight maps for the pre-
diction of ADNI-MEM in HC A�+ and ADNI-EF in
HC A�– are shown in Supplementary Figure 2 and
a list of the regions with the highest weights in each
map is shown in Supplementary Table 1.

DISCUSSION

Our main results showed that in HC A�+ subjects,
RVR-derived patterns of GM volume change within
a priori defined functional networks were good
predictors of concurrent episodic memory decline.
These patterns covered predominantly posterior pari-
etal, hippocampal, and frontal brain regions and the

method outperformed common neuroimaging mark-
ers such as changes in hippocampal volume. These
results suggest that, in asymptomatic cognitively
normal subjects at risk for AD, specific patterns
of pronounced GM atrophy in functional network
regions are associated with subtle decline in episodic
memory. In contrast, in normal aging (HC A�–),
frontal GM changes are predominantly associated
with executive function.

In HC A�+ subjects, GM changes within the
a priori, meta-analytically derived map of episodic
memory network were highly predictive of concur-
rent decline in memory. Precisely these brain regions,
i.e., the posterior parietal cortex and hippocampus,
showed faster GM atrophy in HC A�+ compared to
HC A�–. This is consistent with findings of faster
GM volume decline within those regions, observed
previously in HC A�+ subjects [8, 11, 14, 47] and
to a larger extent in MCI due to AD [48, 49], which
overall suggests that in HC A�+ early but subtle GM
changes are found in key brain regions affected in
AD. Thus, the RVR-derived weight maps provided
anatomically feasible patterns of early GM change
to track AD-related decline in episodic memory.
Interestingly, also regions within the executive func-
tion network were predictors of concurrent decline
in episodic memory in the HC A�+ subjects. Such
association may be due to the fact that frontal brain
regions, belonging to the executive function network,
have a wider role in cognition, not restricted to a par-
ticular cognitive domain. That is, the frontal executive
control regions are part of the fronto-parietal atten-
tion network, which plays an important role not only
in executive function but also other cognitive abili-
ties including episodic memory retrieval [42]. Thus,
it is reasonable that GM changes in such frontal brain
regions contribute to episodic memory changes in
A�+.

Importantly, RVR yielded a better performance
than region-based measures of GM change, such as
the whole GM or the hippocampus, a region rec-
ommended as a marker of neurodegeneration in the
early stages of pre-symptomatic AD by the NIA-AA
diagnostic guidelines [1]. In addition, changes within
a previously proposed multi-ROI measure of cortical
GM, based on AD-signature regions [45], was only
marginally associated with episodic memory changes
in HC A�+. However, it should be noted that this sig-
nature was specifically tailored for the classification
of HC A�+ versus healthy adults, and might therefore
be suboptimal for the prediction of cognitive decline.
Thus, our current results on RVR provide a novel,
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Fig. 6. Actual versus Estimated rates of change in test score result-
ing from the RVR models for ADNI-MEM (top row) and ADNI-EF
(middle row) in HC A�+ (left column) and HC A�– subjects (right
column).

promising approach to predict the rate of cognitive
worsening in subjects at risk for AD.

In contrast to the findings in HC A�+, GM changes
restricted to the executive function network in HC
A�– subjects were good predictors of concurrent
decline in executive function but not in memory. This
pattern of GM changes was weighted towards the
frontal lobes, consistent with previous findings show-
ing that age-related frontal GM atrophy is associated
with decline in executive function [50, 51] (reviewed
in [52]). Together, our results suggest that RVR maps
of GM changes show high sensitivity to track changes
in episodic memory in HC A�+ in contrast to track-
ing changes in executive function in normal aging.
However, sample size restrictions (see caveats below)
should be kept in mind when interpreting the speci-
ficity of the findings, as it is possible to detect weaker
(r ∼ 0.2) but significant correlations with larger sam-
ple sizes.

The unrestricted RVR analysis, applied to the
whole GM rather than restricted to a priori
selected functional networks, was consistent with the
restricted analysis in the sense that RVR yielded accu-
rate estimations of ADNI-MEM changes in HC A�+

and ADNI-EF changes in HC A�–. However, these
analyses resulted in a lower prediction accuracy, sug-
gesting that core brain regions underlying episodic
memory or executive function were already contained
within the a priori functional network masks.

In contrast to the previous results, we found no
association between GM change and global cogni-
tion as measured by ADAS-Cog in any of the groups.
It is possible that global cognitive decline as assessed
by ADAS-Cog is related to a diffuse pattern of GM
changes that is hard to assess by RVR. Thus, the
focus on specific cognitive domains by restricting the
RVR analysis to the corresponding functional net-
works yielded a higher accuracy in predicting subtle
concurrent cognitive decline.

Our current results extend previous applications of
pattern recognition methods, such as SVM, which
provide markers with clinically relevant accuracy
for binary diagnostic classification (i.e., separating
HC from AD subjects) [22, 24] or for the assess-
ment of clinical outcome (e.g., conversion to AD)
[22, 24, 53–55]. The application of pattern recogni-
tion methods has only recently been expanded for
the estimation of continuous variables, made pos-
sible by the development of methods such as RVR
[56]. RVR has been applied in neuroimaging for the
prediction of illness severity in depression [57] and
age in late adulthood [20, 21, 58]. For the estimation
of cognitive performance, RVR has been previously
tested in a pooled sample of HC, MCI and AD
dementia subjects, cross-sectionally [19]. A pattern
of GM differences predominantly within temporal
and parietal brain regions was associated with global
cognitive performance, with good estimation accu-
racy (r = 0.58). RVR yielded also a predictive model
for episodic memory in the pooled sample, albeit at
a lower level of accuracy (r = 0.13). However, the
pattern of GM change associated with episodic mem-
ory was not reported, so that their findings cannot be
directly compared with the current results. Together,
ours and previous results suggest that RVR provides
a promising approach to detect GM changes provid-
ing estimations of cognitive scores across the AD
spectrum.

For the interpretation of the present study, some
caveats need to be taken into account. First, our
sample size was limited. The inclusion of longitu-
dinal follow-up data of both MRI and cognition in
a well-characterized cohort of cognitively healthy
elderly with known A� status, however, is a strength
of the study. We applied cross-validation to guard
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against the influence of single observations, which
may have a relatively higher weight in small sam-
ples. Moreover, it is worth noting that with relatively
small sample sizes, higher correlation values between
actual and predicted rates of change are required to
reach significance. Conversely, with larger sample
sizes, relatively lower correlation values may be
deemed significant. This should be taken into account
when interpreting the non-significant association
between GM changes and episodic memory in HC
A�– or executive function in HC A�+.

Second, our classification of A� status was based
on different measures of amyloid deposition, namely
CSF A�, PiB-PET, and AV-45 PET, which could
have introduced measurement-specific bias in the
classification. However, classifications of A� sta-
tus based on AV-45 PET and CSF A�1-42 yielded
a similar proportion of A�+ subjects, suggesting
that there was no measurement-dependent classifica-
tion bias. In addition, the extrapolation of A� status
from follow-up visits to baseline may have intro-
duced a source of variability. However, all subjects
assessed with amyloid-PET after baseline were, at the
time of measurement, either well below or well above
the corresponding cut-off values (Table 1), rendering
thus unlikely that extrapolation may have introduced
misclassifications.

Another caveat is that we focused solely on GM
volume change, whereas a number of neurodegen-
erative processes such as brain hypometabolism,
measured with FDG-PET, or WM disruption,
assessed with diffusion MRI, may also contribute
to cognitive decline in the preclinical stages of AD.
A previous study in cognitively healthy elderly sub-
jects showed that a combination of different imaging
features (such as GM and WM volume, and FDG-
PET) provided improved accuracy for the prediction
of cognitive scores compared to each image modality
alone [17]. Thus, a combination of different image
modalities may also improve the accuracy of the
prediction of cognitive decline in preclinical AD.
However, any benefits for the improvement in pre-
dictive accuracy by the acquisition of additional
measures must be weighted against the increase in
stress for the patients, monetary costs, as well as
feasibility in clinical practice. Finally, it has to be
pointed out that we did not predict subsequent cogni-
tive decline based on baseline GM atrophy, but rather
estimated cognitive decline concurrent to the changes
in GM. The present approach could be therefore used
in clinical trials that include cognitively normal sub-

jects at risk of AD, for instance to assess deviations
from an expected course of cognitive decline given
a certain pattern of GM changes. When using base-
line maps as predictors of future cognitive decline no
predictions were significant for any of the cognitive
measures in either group (data not shown), which lim-
its the current findings to longitudinal assessments
of both GM and cognitive changes. Larger
cross-sectional studies may however uncover cross-
sectional GM differences that may have prognostic
value for future cognitive decline.

In conclusion, our results highlight the value of
RVR to predict concurrent cognitive decline on the
basis of subtle neurodegeneration in preclinical AD
and aging, when such GM changes may lie below the
detection threshold for more traditional ROI-based
methods.
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